

Task Group 76: Radiological Protection from Naturally Occurring Radioactive Material (NORM) in Industrial Processes

Members

A wide range of practices

- Mining and extractive industries (other than U mines)
- Production of coal, oil, gas
- Production and use of metals (thorium, niobium, zirconium, \bullet titanium...)
- Phosphate industry

- Jean-François Lecomte (Chair), France Dejanira da Costa Lauria, Brazil Philip Egidi, USA **P.P. Haridasan***, IAEA **Astrid Liland**, Norway Fudong Liu, China Mika Markkanen, Finland **Stefan Mundigl***, EC **H.Burçin Okyar***, IAEA Peter Shaw, UK
- * Corresponding members

Other contributors

Sylvain Andresz (Secretary), France Jelena Mrdakovic-Popic, Norway

Characteristics of Industries involving NORM

- Identified, already on-going, big size but not one sector in itself
- Often **multi-hazards**, radiological risk rarely dominant

- Water treatment \bullet
- Cement production \bullet
- Building materials

Protection of workers

Characterisation of the exposure situation

Integration, as necessary, of RP in common OHS provisions The approach is then **graded**

Reference Level reflecting the distribution of exposures

- Less than a few mSv/y (most cases)
- Above a few mSv/y but very rarely exceeding 10 mSv/y

By selecting appropriate **protective actions**: 2 series

- Collective: related to workplaces and working conditions
- **Individual**: related to each worker \bullet

More or less thorough implementation of protective actions

Protection of the environment

- Subject to **authorisation**, not for RP
- Experience in risk management but poor RP culture
- NORM cycle: Extraction, transformation, use, reuse/recycling, waste
- **Ubiquity**, **variability** of exposures
- No real prospect of emergency leading to tissue reaction or immediate danger to life
- May pose an issue of **environmental contamination**

Protection of the public

Characterisation (who is exposed, when, where, how)

- Exposure pathways analysis
- Dose assessment
- Justification of action
- Optimisation of protection
- Involvement of stakeholders
- Long-term monitoring

Optimisation within a graded approach by controlling discharges, waste, recycled residues (e.g. building materials) Selection of a relevant **Reference Level** Generally less than a few of mSv/y Stakeholder involvement

Source = discharges and residues **Integrated** approach

- All hazards: radiological and non-radiological stressors
- All impacts: human and ecological (non-human species)

Graded approach

- Generic assessment
- Specific assessment \bullet
- Detailed Environmental Impact Assessment (EIA) \bullet
- Use of tools (RAP...) and criteria (DCRL...) from Pub 124 as appropriate

Stakeholder involvement

